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(57) ABSTRACT

In accordance with various aspects of the disclosure, a detect-
ing engine for detecting targets/materials in hyperspectral
scenes is disclosed. The detecting engine combines data par-
titioning and dimensionality reduction to reduce the number
of computations needed to identify in which pixels in ahyper-
spectral scene a given material is present. Computation
reduction (in some instances, by two fold) greatly impacts the
speed of and power consumed by the detecting engine making
the engine suitable for hyperspectral imaging of large scenes,
processing using many filters per pixel, or missions requiring
testing large numbers of reference spectra to see which are
present in a scene.
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For each pixel with full spectrum, determine
score indicative of likelihood spectrum of
respeactive pixel matches subject spectrum of
respective material

l

Transform subject spectrum of respective
material into dimensional reduced library
coefficients based on basis vectors

T 410

/7

L

For each pixel with dimensional reduced
coefficients, determine which pixel is a varying
pixel having dimensional reduced coefficients
sufficiently different from dimensional reduced

coefficients associated with other pixels

i

For each varying pixel determine a score
indicative of the likelihcod that dimensicnal
reciuced coefficients associated with respective
varying pixel match the dimensiona! reduced
library coefficients of respective material

L

Compare scores 1o a threshold

l

Based on comparison, determine in which of the
pixels in the hyperspectral scene the respective
material is present
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1
RAPID DETECTION

BACKGROUND

This disclosure relates generally to the field of image pro-
cessing, and more particularly to a system and a method for
detecting materials in a hyperspectral scene.

In many conventional image processing scenarios com-
prising hyperspectral imaging (HSI) systems, hyperspectral
sensors collect data of an image from one spatial line and
disperse the spectrum across a perpendicular direction of the
focal plane of the optics receiving the image. Thus a focal
plane pixel measures the intensity of a given spot on the
ground in a specific waveband. A complete HSI cube scene is
formed by scanning this spatial line across the scene that is
imaged. The complete HSI cube may be analyzed as a mea-
surement of the spectrum, the intensity in many wavebands,
for a spatial pixel. This spatial pixel represents a given spot on
the ground in a cross-scan direction for one of the lines at a
given time in the scan direction. These spectra are analyzed to
detect targets or spectral anomalies.

SUMMARY

There is a need to make detection processing for hyper-
spectral imaging more efficient, so it can be scalable to large
scenes of many pixels, or for missions in which it is desirable
to test large numbers of reference spectra, using many filters
per pixel to see which materials are present in the scene.
Current processing techniques fall short of meeting this need.
For example, approaches applying one or more detection
filters per candidate target to every pixel of an HSI scene in
which each pixel is a full dimension vector are not scalable,
and will result in a large increase in the number of mathemati-
cal operations as the number of pixels and/or reference spec-
tra increase. Another approach, using an RX anomaly detec-
tion filter to identify the 10% most anomalous pixels in an
HSI scene and then applying reference spectra filters only to
those top 10% of the pixels, can too often miss critical targets.

A detecting engine according to examples described herein
address the foregoing need by reducing computations
required for detection/identification by up to two orders of
magnitude. In some examples, even more reduction may be
possible. An overview of the detecting engine and its
examples is provided immediately below.

The detecting engine partitions data into reduced dimen-
sionality (DIMRED) pixels and “set aside” pixels of full
dimension. The latter represent less than 1% of all pixels in a
scene. The detecting engine reduces the DIMRED pixels in
size by 10-20x compared to original data. The detecting
engine further partitions the DIMRED pixels into pixels with
spectral variety and those that are not well distinguished from
each other. In test scenes, typically 80-95% of the pixels can
be of low spectral variation and not distinguishable.

The detecting engine processes DIMRED pixels that show
variation in REDUCED SPACE using an updated
REDUCED dimension covariance and reports detections.
The detecting engine processing in reduced dimension takes
fewer computations because of the smaller dimensions of the
vectors and matrices, and the smaller number of pixels pro-
cessed. The detecting engine processes the small number of
set aside pixels in full dimension using the full scene covari-
ance. The detecting engine processing in full dimension takes
fewer computations because of the paucity of set aside pixels.

Some examples of the detecting engine take an additional
step of accepting or rejecting a library reference spectrum
based on scene-wide testing using basis vectors. Prior to any
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pixel level testing, the detecting engine unmixes a reference
spectrum using the current set of basis vectors associated with
the scene. The detecting engine decides whether to test for the
reference spectrum in the reduced dimension pixels based on
the magnitude of residual vector of the reference spectrum. A
large residual means it is very unlikely that the candidate
target/material is in the reduced dimension pixels of the
scene, since these pixels have small magnitude residuals (un-
like the set aside pixels).

Some examples of the detecting engine include the set
asides pixels in the pixels of spectral variation and then com-
pare them to spectral libraries in REDUCED SPACE. The
residual spectra of the set asides, the unique portion of those
spectra, is compared against residual portions of spectral
libraries and those results are fused with the DIMENSIONAL
REDUCED comparisons from the same pixels.

In summary, the detecting engine partitions data into
reduced dimension, set asides, and indistinguishable pixels
while retaining targets of interest. The detecting engine
reduces the number of computations needed by combining
partitioning and dimensionality reduction. In some cases, the
detecting engine reduces of the number of computations up to
two orders of magnitude. As such, the speed of detection by
the detecting engine is greatly improved and the computa-
tional and electrical power used by the detecting engine to
detect targets is greatly reduced.

In accordance with an example, a method for detecting
materials in a hyperspectral scene includes, in a detecting
engine provided with: i) a spectral library of references in
which each reference is a spectrum of a material, ii) dimen-
sional reduced representations of the spectra of a first plurali-
ties of pixels included in the hyperspectral scene, the repre-
sentations including basis vectors and dimensional reduced
coefficients, and iii) full spectra ofa second plurality of pixels
included in the hyperspectral scene, with respect to a subject
spectrum of a respective material from the spectral library of
references, for each pixel in the second plurality of pixels,
determining a score indicative of the likelihood the spectrum
of a respective pixel matches the subject spectrum of the
respective material. The method further includes transform-
ing the subject spectrum of the respective material into
dimensional reduced library coefficients based on the pro-
vided basis vectors. The method further includes, for each
pixel in the first plurality of pixels, determining which pixel is
a spectrally variant pixel having dimensional reduced coeffi-
cients sufficiently different from dimensional reduced coet-
ficients associated with other pixels. The method further
includes, for each variant pixel, determining a score indica-
tive of the likelihood that the dimensional reduced coeffi-
cients associated with a respective variant pixel match the
dimensional reduced library coefficients of the respective
material. The method further includes comparing the scores
of'both pluralities of pixels to thresholds. The method further
includes based on the comparison, determining in which of
the pixels in the hyperspectral scene the respective material is
present.

In accordance with an example, a system for detecting
materials in a hyperspectral scene includes a memory storing
computer executable instructions and at least one interface
receiving: i) a spectral library of references in which each
reference is a spectrum of a material, ii) dimensional reduced
representations of the spectra of a first pluralities of pixels
included in the hyperspectral scene, the representations
including basis vectors and dimensional reduced coefficients,
and iii) full spectra of a second plurality of pixels included in
the hyperspectral scene. The system further includes a detect-
ing engine coupled to the memory and the at least one inter-
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face. The computer executable instructions when executed by
the detecting engine cause the detecting engine to, with
respectto a subject spectrum of a respective material from the
spectral library of references, for each pixel in the second
plurality of pixels, determine a score indicative of the likeli-
hood the spectrum of a respective pixel matches the subject
spectrum of the respective material. The detecting engine
further caused to transform the subject spectrum of the
respective material into dimensional reduced library coeffi-
cients based on the provided basis vectors. The detecting
engine further caused to, for each pixel in the first plurality of
pixels, determine which pixel is a variant pixel having dimen-
sional reduced coefficients sufficiently different from dimen-
sional reduced coeflicients associated with other pixels. The
detecting engine further caused to, for each variant pixel,
determine a score indicative of the likelihood that the dimen-
sional reduced coefficients associated with a respective vari-
ant pixel match the dimensional reduced library coefficients
of the respective material. The detecting engine further
caused to compare the scores to a threshold. The detecting
engine further caused to, based on the comparison, determine
in which ofthe pixels in the hyperspectral scene the respective
material is present.

In accordance with an example, a tangible computer-read-
able storage medium storing computer readable instructions
for processing images, which when executed by one or more
processors cause the one or more processors provided with: 1)
a spectral library of references in which each reference is a
spectrum of a material, ii) dimensional reduced representa-
tions of the spectra of a first pluralities of pixels included in
the hyperspectral scene, the representations including basis
vectors and dimensional reduced coefficients, and iii) full
spectra of a second plurality of pixels included in the hyper-
spectral scene, cause the one or more processors to, with
respectto a subject spectrum of a respective material from the
spectral library of references, for each pixel in the second
plurality of pixels determine a score indicative of the likeli-
hood the spectrum of a respective pixel matches the subject
spectrum of the respective material. The one or more proces-
sors further caused to, transform the subject spectrum of the
respective material into dimensional reduced library coeffi-
cients based on the provided basis vectors. The one or more
processors further caused to, for each pixel in the first plural-
ity of pixels, determine which pixel is a variant pixel having
dimensional reduced coefficients sufficiently different from
dimensional reduced coefficients associated with other pix-
els. The one or more processors further caused to, for each
variant pixel, determine a score indicative of the likelihood
that the dimensional reduced coefficients associated with a
respective variant pixel match the dimensional reduced
library coefficients of the respective material. The one or
more processors further caused to, compare the scores to a
threshold. The one or more processors further caused to,
based on the comparison, determine in which of the pixels in
the hyperspectral scene the respective material is present.

In other examples, any ofthe aspects above can include one
or more of the following features.

In some examples, determining the score indicative of the
likelihood the spectrum of the respective pixel matches the
subject spectrum of the respective material includes compar-
ing the spectrum of the respective pixel and spectrum of the
subject spectrum of the respective material, in full dimension,
using a Matched Filter or Adaptive Cosine/Coherence Esti-
mator (ACE).

In other examples, determining which pixels with dimen-
sional reduced coefficients are variant pixels includes sepa-
rating the variant pixels from the majority of similar pixels
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using Reed-Xiaoli (RX) anomaly detection in reduced
dimensional space or residual magnitude scores.

In some examples, the score indicative of the likelihood
that the dimensional reduced coefficients associated with the
respective variant pixel match the dimensional reduced
library coefficients of the respective material includes com-
paring the dimensional reduced coefficients associated with
the respective variant pixel and dimensional reduced library
coefficients of the respective material using a reduced dimen-
sion version of a matched filter (MF), Adaptive Cosine/Co-
herence Estimator (ACE) or (RACE).

In other examples, the method further includes calculating
an error associated with the dimensional reduced library coet-
ficients of the respective material, comparing the calculated
error to a second threshold, and based on the comparison
determining that the respective material is not present in any
of'the pixels in the hyperspectral scene represented by dimen-
sional reduced coefficients.

In some examples, the detecting engine determines the
score indicative of the likelihood the spectrum of the respec-
tive pixel matches the subject spectrum of the respective
material by comparing the spectrum of the respective pixel
and spectrum of the subject spectrum of the respective mate-
rial, in full dimension, using a Matched Filter or Adaptive
Cosine/Coherence Estimator (ACE).

In other examples, the detecting engine determines which
pixels with dimensional reduced coefficients are variant pix-
els by separating the variant pixels from the pixels using
Reed-Xiaoli (RX) anomaly detection in reduced dimensional
space or residual magnitude scores.

In some examples, the detecting engine determines the
score indicative of the likelihood that the dimensional
reduced coefficients associated with the respective variant
pixel match the dimensional reduced library coefficients of
the respective material by comparing the dimensional
reduced coefficients associated with the respective variant
pixel and dimensional reduced library coefficients of the
respective material using a reduced dimension version of a
matched filter (MF), Adaptive Cosine/Coherence Estimator
(ACE) or (RACE).

In other examples, the computer executable instructions
when executed by the detecting engine further cause the
detecting engine to calculate an error associated with the
dimensional reduced library coefficients of the respective
material, compare the calculated error to a second threshold,
and based on the comparison determine that the respective
material is not present in any of the pixels in the hyperspectral
scene represented by dimensional reduced coefficients.

These and other features and characteristics, as well as the
methods of operation and functions of the related elements of
structure and the combination of parts and economies of
manufacture, will become more apparent upon consideration
of the following description and the appended claims with
reference to the accompanying drawings, all of which form a
part of this specification, wherein like reference numerals
designate corresponding parts in the various Figures. It is to
be expressly understood, however, that the drawings are for
the purpose of illustration and description only and are not
intended as a definition of the limits of claims. As used in the
specification and in the claims, the singular form of “a”, “an”,
and “the” include plural referents unless the context clearly
dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following more particular descrip-
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tion of the embodiments, as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to scale, emphasis instead being placed upon
illustrating the principles of the embodiments.

FIG. 1 is a block diagram of an example imaging system.

FIG. 2 is a block diagram of an example process for pro-
cessing images.

FIGS. 3A and 3B are block diagrams of example systems
for detecting materials/targets in scenes.

FIG. 4is aflow chart block diagrams of an example process
for detecting materials/targets in scenes.

DETAILED DESCRIPTION

In the description that follows, like components have been
given the same reference numerals, regardless of whether
they are shown in different examples. To illustrate an
example(s) of the present disclosure in a clear and concise
manner, the drawings may not necessarily be to scale and
certain features may be shown in somewhat schematic form.
Features that are described and/or illustrated with respect to
one example may be used in the same way or in a similar way
in one or more other examples and/or in combination with or
instead of the features of the other examples.

Depicted in FIG. 1 is an example of imaging system 102
that is configured to process images and to detect materials/
target in scenes. By way of example only, imaging system 102
may be a hyperspectral imaging system. The term “hyper-
spectral” refers to imaging narrow spectral bands over a con-
tinuous spectral range, and producing the spectra of all pixels
in a scene (e.g., scene 106). Imaging system 102 may be
stationary or mobile, airborne or land based (e.g., on an
elevated land structure or building), or may be on an aircraft
or a satellite. As shown, imaging system 102 may incorporate
image processor 100, and may be coupled to or otherwise
contained within remote imaging system 104. Remote imag-
ing system 104 may be of any suitable construction or con-
figuration, including but not limited to comprising a satellite,
an aerial surveillance system, or any other system that can
capture images. Additionally, remote imaging system 104
may be stationary or mobile. In an example, imaging system
102 and remote imaging system 104 may be configured to
capture one or more images of a particular scene 106 corre-
sponding to a geographical area (e.g., a ground terrain).

In an example, remote imaging system 104 may be config-
ured to use imaging system 102 to capture hyperspectral
image(s) of scene 106 that are provided as input hyperspectral
image (HSI) scenes to image processor 100. In an example,
hyperspectral imaging system 102 may include one or more
scan mirrors 110, or may include other optics arranged to
receive light 108 reflected from one or more ground resolu-
tion cells. Light 108 reflected from one or more ground reso-
Iution cells, and generally the entire scene 106, may be used
by image processor 100 to determine an input reflectivity of
input HSI scene. Input HSI scene may be a part of scene 106,
or may be the entire scene 106 depending upon specific target
detection goals. In an example, scan mirrors 110 or the other
optics may then direct light 108 through dispersing element
112, which may be arranged to separate light 108 into various
different wavelengths (i.e., a spectra). After being separated
into the various different wavelengths, light 108 may then be
directed to one or more imaging optics 114, which may focus
the various wavelengths onto a focal plane of detector array
116. As such, detector array 116 may capture hyperspectral
data across the spectrum of wavelengths, thereby generating
a data set corresponding to a hyperspectral image of scene
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106. By way of example only, such a data set formed across
the spectrum of wavelengths may be used to construct a
hyperspectral image data cube (or, an HSI data cube), such as
that described in the above-referenced U.S. application Ser.
No. 13/446,869, incorporated by reference in its entirety
herein. For example, the HSI data cube may be scanned and
input to image processor 100. In an example, the HSI
datacube is a three dimensional (3D) data cube with two
spatial dimensions corresponding to the spatial dimensions of
scene 106, and a third spectral dimension corresponding to
the spectra of wavelengths measured for each spatial location.
The focal plane, which includes the line of detectors shown in
116, is composed of focal plane pixels, which specify a loca-
tion in one cross-scan spatial dimension and one spectral
band. For example, scanning of two-dimensional scene 106
over a spectrum of wavelengths by imaging system 102 cre-
ates an additional spatial dimension, resulting in the 3D HSI
data cube. Any two of the three dimensions of the HSI data
cube may be selected by image processor 100 to form a two
dimensional image input to image processor 100 for process-
ing, in accordance with various examples described herein.
For example, spatial pixels may be defined as a spatial loca-
tion in two-dimensional Cartesian coordinates. As a result,
the 3-D HSI data cube comprises a spectrum for each spatial
pixel and may be analyzed by image processor 100 as a set of
spectra for the spatial pixels. Alternatively, the 3D HSI cube
comprises a set of samples at different times along the scan
direction for each focal plane pixel and may be analyzed by
image processor 100 as a set of samples along the scan direc-
tion for each cross-scan spatial location and spectral wave-
band. As described herein, the term “sample” refers to a focal
plane pixel, at a particular reflective wavelength (A) and
cross-scan location, at a specific time in the scan. Likewise,
the term “samples” refers to the focal plane pixel at the
particular reflective wavelength and cross-scan location at a
set of different time instances, respectively.

Following the generation of the data set in the 3-D HSI data
cube corresponding to the hyperspectral image of scene 106,
image processor 100 may process the data set so as to reduce
the dimensionality of the hyperspectral input scene image
and/or decompose the input scene image into a compressed
scene image and a hyperspectral residual image, as described
in greater detail below. Using alternative terminology, the 3-D
data cube may be decomposed into a compressed scene data
cube and a residual scene data cube.

Such decomposition may be performed by image proces-
sor 100, for example, by approximating the spectra of each
spatial pixel in the 3-D HSI data cube, as a linear combination
of basis vectors (BVs) having coefficients to best approxi-
mate the 3D HSI data cube and storing the errors in this
approximation in the residual data cube. Such decomposition
of the input scene spectra into BVs by the image processor
100 is described, for example, in U.S. application Ser. No.
13/085,883, incorporated by reference in its entirety herein.

When the complete set of input scene spectra is considered,
image processor 100 may decompose the input HSI data cube
using BV coefficients for the spectra of each spatial pixel in
the data cube. The term reduced dimensionality is used herein
because the number of BV coefficients is smaller than the
number of wavebands in the original datacube. Additionally,
BVs may be used to quickly detect materials in scenes, as
described in greater detail below.

In one example, the compressed scene image (or, com-
pressed image) is a reduced dimensionality scene represen-
tation of the input hyperspectral scene image derived from
input 3D HSI data cube, and obtained at detector array 116. In
an example, as described in greater detail below, the degree to
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which the dimensionality of the image is reduced in the com-
pressed image and/or whether the dimensionality reduction is
to be classified as lossy or lossless may be determined by
adjustable features of imaging system 102. The hyperspectral
residual image or data cube is comprised of the errors in each
spectral waveband for each spatial pixel from the decompo-
sition of the input hyperspectral scene image, and is substan-
tially devoid of any content associated with scene 106,
although in some examples, under less than ideal conditions,
such as an inadequate BV set, some scene structure may leak
into the residual image or the residual scene data cube. In
addition to decomposing an input HSI data cube, BVs may
also be used to quickly detect materials in scenes.

As shown, the imaging system 102 may also incorporate a
detecting engine 150 for detecting material/targets in scenes.
Typically, the detection process involves testing measured
spectra against large libraries of potential targets/materials,
and there may be no a priori knowledge of content. In par-
ticular, target detection requires comparing each pixel in a
scene against very large spectral libraries. The problem of
detecting targets in scenes can be characterized as testing L.
candidate target spectra against each of P measured pixels of
vector Dimension D or LxPxD. A typical mission includes
millions of pixels and thousands of sample spectra leading to
billions of computations needed to detect targets in scenes.
This is not practical for the detecting engine 150.

Instead, examples of the detecting engine 150 reduce some
or all of L, D, and P. The detecting engine 150 eliminates
uninteresting/common pixels without throwing away targets.
The detecting engine 150 then processes all/most of the
remaining pixels with reduced dimensionality. In operation,
some examples of the detecting engine 150 reduce the num-
ber of P to ~0.1 P (representing about a 10x reduction in
number of computations needed) and reduce D from 100 s to
10 s (representing another 10x reduction in number of com-
putations needed). There is a small overhead to eliminate
pixels and reduce vector size. The detecting engine 150 take
extra steps to preserve targets, as described in greater detail
below. The detecting engine 150 eliminates some (possibly
many) of the L spectra using BV unmixing errors (computa-
tional savings depends on library and scene but could be an
additional 10x).

At a high level, examples of the detecting engine 150
speed-up HSI detection of materials, that is, reduce the num-
ber of computations needed, by parsing data into streams that
are compared with references more efficiently while main-
taining the spectral accuracy needed to make accurate deter-
minations of material. A convenient example of the detecting
engine 150 also parses the reference library into streams that
can be compared more efficiently with the scene spectral
content.

Examples of the detecting engine 150 employ a technique
predicated on having a dimensionally reduced scene with
spectral errors less than a threshold for every pixel. The
detecting engine 150 uses BVs that allow most pixel spectra
to be accurately approximated with a small number of basis
vector coefficients. Each pixel spectral error is compared to
the error threshold and those pixels which exceed the thresh-
old are included with their original full spectra (and no error).

FIG. 2 illustrates flow diagram for a process 200 for pro-
cessing images, in accordance with an example. In one
example, the residual HSI image is extracted from an input
HSI data cube. Accordingly, although the operations below
are being described with respect to one or more residual or
compressed images, the operations may be carried out on
complete or whole data cubes having a plurality of such
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“composite image,” “composite images,” “residual image,”
or “residual images,” the terms “data cube,” “data cubes,”
“composite data cube,” “composite data cubes,” “residual
data cube,” or “residual data cubes,” respectively, may
equally be used without departing from the scope of the
examples described herein. Further, an image or images may
be formed from extracting data of any two of the three dimen-
sions that make up the data cube. For example, image proces-
sor 100 may carry out operations on the whole data cube, and
as such, the hyperspectral image is actually a 3D image. [t can
be thought of as spectra for each 2D location or as many 2D
scene images in different spectral bands. Some of the pro-
cessing is done on the whole cube; some is done on images
produced from the 3D HSI data cube. Processing done on the
whole 3D HSI data cube may be in one dimension (ID) and
may be applied to all samples in the other two dimensions, for
example, for spectral processing of all the 2D spatial pixels or
sample processing of all the 2D focal plane pixels.

In an operation 202, image processor 100 receives one or
more hyperspectral images (or, input data cubes) correspond-
ing to an input HSI scene (obtained from scene 106 or a
factory supplied image or data cube). In one example, the
input HSI scene may have a plurality of images or image
frames obtained across various different wavelength bands
() at the focal plane of detector array 116. Alternatively, as
also noted above, the whole 3-D HSI data cube may be
received at image processor 100 for processing. The input
scene image or the input HSI data cube associated with the
input scene image may then be provided to image processor
100 for processing. Input scene image may include a plurality
of pixels arranged according to a coordinate system (e.g.,
X-Y Cartesian coordinate system). By way of example only,
such pixels may be focal plane pixels and/or spatial pixels, as
defined above.

In an operation 204, basis vectors (BVs) associated with
each spatial pixel in the input scene image are determined by
image processor 100. Each BV used to describe the input
scene image represents a spectrum, the intensity at each
wavelength, which is a component of each spatial pixel’s
spectrum. Image processor 100 determines coefficients asso-
ciated with the BVs for each of the spatial pixels and unmixes
the BV representation of the input scene image. The input HSI
scene image can be approximately represented as a linear sum
of coefficient weighted basis vectors; and the residual com-
ponents are the error at each waveband for each spatial pixel
in this approximation. In one example, a small number of BVs
may be used to characterize most of the input scene image.
Such a process of determining BVs may include starting with
a seed BV and establishing additional BVs to complete a set
of BVs that represent the input scene image. The additional
BVs may be used to remove scene structure from the residual
datacube and residual images derived therefrom. Scene struc-
ture may be defined as material in scene 106 with a spectrum
that is different from the spectra of other things or items in
scene 106. Unmixing of the BVs comprises carrying out a
linear fit of vectors to approximate the input scene image.
Details of determining BVs and unmixing them are provided
in the above-referenced U.S. application Ser. No. 13/085,883,
incorporated by reference herein, and will not be described,
although other techniques of BV representation of images
may be applied by image processor 100 to approximate input
scene image leaving artifacts and noise in the residual scene.

In an operation 206, unmixing BVs from every pixel,
yields the compressed scene image 206a having unmixed BV
coefficients, and residual image 2065. When complete data
cubes are processed by image processor 100, a residual HSI
data cube (or, residual scene data cube) may be obtained by
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projecting out one or more basis vectors from every spatial
pixel in the input HSI data cube. Ideally, residual image 2065
or the residual data cube has no scene structure, because the
scene structure is contained in the reduced dimensionality
scene image 206a. The error spectra of unmixed BVs form
residual image 2065, which may contain sensor artifacts with
very little scene content.

The process of unmixing the input scene image or input
HSI data cube into compressed scene image 206a (or, com-
pressed scene data cube) and residual image 2065 (or,
residual scene data cube) is referred to herein by terms
“decomposition,” “decomposing,” “transformation,” or
“transforming” of input scene image or input HSI data cube.
One example of the image processor 100 determines which of
the pixels in the input scene image cannot be represented to
sufficient accuracy by a set of basis vector coefficients based
on the residual image 2064.

The image processor 100 then provides these pixels in full
dimension to the detecting engine 150 for further processing.
The image processor 100 provides BVs associated with some
of spatial pixel in the input scene image and unmixed BV
coefficients to the detecting engine 150.

FIGS. 3A and 3B show examples of the detecting engine
150 detecting in which of a 1 million pixels in a hyperspectral
scene, materials or targets from a library of 1000 references
are present. The spectra of a given pixel has 256 wavelengths
referred to as “dimensions.” The standard approach to detec-
tion compares the spectra of 256 dimensions of each 1 million
scene pixels against the spectra of 256 dimensions of each of
the 1000 references. The standard approach represents bil-
lions of calculations. The detecting engine 150 reduces the
number of pixels (P), references (L), and/or dimensions (D)
used to detect in which of the pixels in the hyperspectral scene
materials or targets from the library of references are present.
In the description below, numbers in parenthesis are example
values that may be achieved by this and other examples of the
detecting engine 150.

Inputs to the detecting engine 150 include 1000 library
spectra or simply “references” 305 (provided from alibrary of
spectral references 380 for example) and an HSI scene 310
with spectra for each of the 1 million pixels in the scene. Most
of the HSI scene pixels provided to the detecting engine 150
are represented by (e.g., 15) dimension reduced basis vector
(BV) coefficients 315, along with a set of basis vector spectra
320 (e.g., 15 spectra in 256 wavelengths) needed to recon-
struct spectra from the set of coefficients 315. The dimen-
sional reduced representation of the spectra of a majority of
the pixels may be provided as the result of image processing
by the image processor 102 described above or by a dimen-
sion reduction process with error control on every pixel, such
as one described by U.S. application Ser. No. 13/085,883. A
small number of pixels (e.g. 5000) that cannot be represented
to sufficient accuracy by the set of basis vector coefficients
315 are included in the input data with their full original
spectra.

The detecting engine 150 compares the vast majority of the
pixels in the HSI scene 310 to the references 305 in dimen-
sional reduced (DIMRED) space, resulting in a 10-20x sav-
ings in calculations. The detecting engine 150 transforms the
references 305 into dimensional reduced library coefficients
335 based on the basis vectors 315. The detecting engine 150
then performs the reduced spectral comparison with the ref-
erences 305 expressed in dimensional reduced library coef-
ficients 335. Error control in the input dimension reduced
cube enables accurate spectral comparisons of dimension
reduced pixels with fewer calculations because the number of
basis vectors is less than the number of spectral bands.
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The detecting engine 150 uses the basis vectors 315 to split
the pixels into a stream of pixels with dimensional reduced
coefficients, referred to as “REDUCED pixels” and another
stream of pixels with full spectrum, referred to as “ORIGI-
NAL pixels.” The REDUCED pixels typically account for
about 99% of the total number of scene pixels. The detecting
engine 150 reduces the number of dimensions (D) of the
REDUCED pixels used for detecting by 10-20x. For
example, while the detecting engine 150 may represent the
ORIGINAL pixels by 100-400 elements (depending on sen-
sor/mission), the detecting engine 150 may represent the
REDUCED pixels by 10-20 elements, which are labeled
“DIMRED Scene Coeffs” 320 in FIG. 3B.

The detecting engine 150 further determines which of the
REDUCED pixels are so common and self-similar that they
should not be processed further. The detecting engine 150
partitions the REDUCED pixels into common and spectrally
different pixels called “VARYING pixels” using a Reed-
Xiaoli (RX) anomaly filter in reduced dimension (which is
very fast) or by using residual magnitude scores. Any pixels
that are sufficiently different from the bulk of the reduced
pixels either in their RX score or in the magnitude of the
residual error in the reduced dimension representation are
considered potential target detections and passed to the DIM-
RED spectral filter. The VARYING pixels are represented, in
part, by DIMRED Scene Coeffs 345. The most common
pixels are labeled “IGNORE pixels” and typically account for
80-95% of the REDUCED pixels.

In operation, the detecting engine 150 runs the anomaly
filter with an anomaly threshold adjusted to allow many pix-
els through, e.g., 5-20%, far more than in the usual applica-
tion of an anomaly filter. The purpose is not to find a few
anomalies but to find all unusual pixels. Some examples of the
detecting engine 150 do not run the anomaly filter in DIM-
RED space when the number of materials in the reference
library is small. When searching a very large library, however,
it may be beneficial to apply this single test to the pixels first.

The detecting engine 150 detects targets in the remaining
5-20% that are VARYING pixels, reducing the number of
pixels (P) used in detecting by 5-20x. The detecting engine
150 compares the spectra of the VARYING pixels with the
library of target spectra in DIMRED space. For example, the
detecting engine 150 uses REDUCED dimension versions of
standard filters, such as matched filter (MF) or Adaptive
Cosine/Coherence Estimator (ACE). In particular, the detect-
ing engine 150 computes the covariance (COV) for the
VARYING pixels in reduced space, separately.

The detecting engine 150 compares the dimensional
reduced library coefficients 335 and DIMRED coefficients
345 of the VARYING pixels. Based on the comparison, the
detecting engine 150 determines a score 350. The score 350 is
indicative of the likelihood the DIMRED coefficients 345 of
a given VARYING pixel (dimensional reduced coefficients
associated with a respective spectrally different pixel)
matches the dimensional reduced library coefficients 335 of a
given material (dimensional reduced library coefficients of a
respective material).

Turning now to the other stream of pixels, the ORIGINAL
pixels are the “most unique” pixels in the HSI scene 310.
These pixels typically account for less than 1% (0.1-1%) of
the total number of scene pixels. In FIGS. 3A and 3B, the
ORIGINAL pixels are labeled “set aside pixels.” The detect-
ing engine 150 compares each of the ORIGINAL pixels/set
aside pixels 325 to the references 305 in full dimension to
maintain sufficient accuracy.

To detect targets in the ORIGINAL pixels/set aside pixels
325, the detecting engine 150 uses full dimension data filters,
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such as matched filter (MF) or Adaptive Cosine/Coherence
Estimator (ACE). Normally, testing every pixel in all dimen-
sions takes a long time (many pixels, many dimensions). The
detecting engine 150, however, performs this step very
quickly. The detecting engine 150 reduces the number of
pixels to test to less than 1% of the total number of scene
pixels. The result is a 100-1000x savings in calculations
compared to the original data. Based on the comparison, the
detecting engine 150 determines a score 340. The score 340 is
indicative of the likelihood the spectrum of a given set aside
pixel 325 matches a given reference 305

The detecting engine 150 compares the scores 350 and 355
to a threshold. Based on the comparison, the detecting engine
150 determines in which of the scene pixels a subject material
is present, shown in FIGS. 3A and 3B as detection 360.

FIG. 3B shows another example of the detecting engine
150. In addition to operations described above with reference
to FIG. 3A, the detecting engine 150 further reduces the
number of references 305 used in detection. The detecting
engine 150 computes for each of the dimensional reduced
library coefficients 335 a magnitude of a residual vector, also
referred to as an “error” 365. The detecting engine 150 then
determines whether the computed error 365 associated a
respective dimensional reduced library coefficients 335 of a
given material is below a threshold (which may be set by a
user of the imaging system 102). If the detecting engine 150
determines that the error 365 for a given reference is below
the threshold, then the detecting engine 150 accepts the given
reference. If the error 365 is above the threshold, that refer-
ence is not tested in the DIMRED filter. For example, the
detecting engine 150 uses a candidate spectrum represented
by the respective dimensional reduced library coefficients
370 in tests on scene pixels.

As shown in FIG. 3A, the detecting engine 150 may be part
of a system 300 for detecting materials in hyperspectral
scenes. (Similarly in FIG. 3B showing system 301.) The
system 300 includes memory (not shown) and at least one
interface 375. The memory stores computer executable
instructions that when carried out by the detecting engine 150
cause the detecting engine 150 to perform the operations
described above with reference to FIGS. 3A and 3B. In some
examples of the system 300, the memory also stores the
spectral library of references 380. The interface 375 receives
the references 305, dimensional reduced representations of
the spectra of some pixels in the hyperspectral scene (e.g., a
second plurality of pixels included in the hyperspectral
scene), the representations including basis vectors 315 and
dimensional reduced coeficients 320, and full spectra 325 of
other pixels in the hyperspectral scene (e.g., a second plural-
ity of pixels included in the hyperspectral scene).

FIG. 4 shows an example process 400 for detecting mate-
rials in a hyperspectral scene, which may be performed by the
detecting engine 150. The detecting engine 150 is provided
with 1) a spectral library of references in which each reference
is a spectrum of a material, ii) dimensional reduced represen-
tations of the spectra of some pixels in the hyperspectral
scene, the representations including basis vectors and dimen-
sional reduced coefficients, and iii) full spectra of other pixels
in the hyperspectral scene. The detecting engine 150 starts at
401 and performs the following process steps with respect to
a subject spectrum of a respective material from the spectral
library of references.

For each pixel with a full spectrum, the detecting engine
150 determines (405) a score indicative of the likelihood
spectrum of a respective pixel matches a subject spectrum of
a respective material. The detecting engine 150 repeats the
determination (405) for each pixel with a full spectrum.
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The detecting engine 150 transforms (410) the subject
spectrum of the respective material into dimensional reduced
library coefficients based on the provided basis vectors.

For each pixel with dimensional reduced coefficients, the
detecting engine 150 determines (415) which pixel is a vary-
ing pixel having dimensional reduced coefficients sufficiently
different from dimensional reduced coefficients associated
with other pixels.

For each varying pixel, the detecting engine 150 deter-
mines (420) a score indicative of the likelihood that the
dimensional reduced coefficients associated with a respective
varying pixel match the dimensional reduced library coeffi-
cients of the respective material.

The detecting engine 150 compares (425) the scores to a
threshold and based on the comparison, the detecting engine
150 determines (430) in which of the pixels in the hyperspec-
tral scene the respective material is present.

The above-described systems and methods can be imple-
mented in digital electronic circuitry, in computer hardware,
firmware, and/or software, e.g., in imaging system 102. The
implementation can be as a computer program product (i.e., a
computer program tangibly embodied in an information car-
rier medium). The implementation can, for example, be in a
machine-readable storage device for execution by, or to con-
trol the operation of, data processing apparatus. The imple-
mentation can, for example, be a programmable processor, a
computer, and/or multiple computers.

In one example, a computer program can be written in any
form of programming language, including compiled and/or
interpreted languages, and the computer program can be
deployed in any form, including as a stand-alone program or
as a subroutine, element, and/or other unit in image processor
100 suitable for use in a computing environment to carry out
the features and functions of various examples discussed
herein. A computer program can be deployed to be executed
on one computer or on multiple computers at one site (e.g., in
imaging system 102).

Method steps or operations can be performed as processes
by one or more programmable processors executing a com-
puter program to perform functions of various examples by
operating on input data and generating output. Method steps
can also be performed by and an apparatus can be imple-
mented as special purpose logic circuitry. The circuitry can,
for example, be a field programmable gate array (FPGA)
and/or an application specific integrated circuit (ASIC). Mod-
ules, subroutines, and software agents can refer to portions of
the computer program, the processor, the special circuitry,
software, and/or hardware that implements that functionality.

Detecting engine 150 may comprise one or more proces-
sors suitable for the execution of a computer program include,
by way of example, both general and special purpose micro-
processors, and any one or more processors of any kind of
digital computer. Generally, a processor receives instructions
and data from a read-only memory or a random access
memory or both. The elements of a computer may comprise a
processor for executing instructions and one or more memory
devices for storing instructions and data. Generally, a com-
puter can include, can be operatively coupled to receive data
from and/or transfer data to one or more mass storage devices
(e.g., a memory module) for storing data (e.g., magnetic,
magneto-optical disks, or optical disks). The memory may be
atangible non-transitory computer-readable storage medium
having computer-readable instructions stored therein for pro-
cessing images, which when executed by one or more pro-
cessors (e.g., detecting engine 150) cause the one or more
processors to carry out or implement the features and func-
tionalities of various examples discussed herein.
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Information carriers suitable for embodying computer pro-
gram instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices. The information carriers can, for example,
be EPROM, EEPROM, flash memory devices, magnetic
disks, internal hard disks, removable disks, magneto-optical
disks, CD-ROM, and/or DVD-ROM disks. The processor and
the memory can be supplemented by, and/or incorporated in
special purpose logic circuitry.

To provide for interaction with a user, the above described
techniques can be implemented on a computing device hav-
ing a display device. The display device can, for example, be
a cathode ray tube (CRT) and/or a liquid crystal display
(LCD) monitor, and/or a light emitting diode (LED) monitor.
The interaction with a user can, for example, be a display of
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computing device (e.g., interact with a user inter-
face element). Other kinds of devices can be used to provide
for interaction with a user. Other devices can, for example, be
feedback provided to the user in any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feedback).
Input from the user can, for example, be received in any form,
including acoustic, speech, and/or tactile input.

The above described systems and techniques can be imple-
mented in a distributed computing system that includes a
back-end component. The back-end component can, for
example, be a data server, a middleware component, and/or an
application server. The above described techniques can be
implemented in a distributing computing system that includes
a front-end component. The front-end component can, for
example, be a client computing device having a graphical user
interface, a Web browser through which a user can interact
with an example implementation, and/or other graphical user
interfaces for a transmitting device. The components of the
system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples of communication networks include a local area
network (LAN), a wide area network (WAN), the Internet,
wired networks, and/or wireless networks.

The system may be coupled to and/or include clients and
servers. A client and a server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue of
computer programs running on the respective computing
devices and having a client-server relationship to each other.

Communication networks may include packet-based net-
works, which can include, for example, the Internet, a carrier
internet protocol (IP) network (e.g., local area network
(LAN), wide area network (WAN), campus area network
(CAN), metropolitan area network (MAN), home area net-
work (HAN)), a private IP network, an IP private branch
exchange (IPBX), a wireless network (e.g., radio access net-
work (RAN), 802.11 network, 802.16 network, general
packet radio service (GPRS) network, HiperLAN), and/or
other packet-based networks. Circuit-based networks may
include, for example, the public switched telephone network
(PSTN), a private branch exchange (PBX), a wireless net-
work (e.g., RAN, Bluetooth, code-division multiple access
(CDMA) network, time division multiple access (TDMA)
network, global system for mobile communications (GSM)
network), and/or other circuit-based networks.

The computing device in imaging system 102 may include,
for example, a computer, a computer with a browser device, a
telephone, an IP phone, a mobile device (e.g., cellular phone,
personal digital assistant (PDA) device, laptop computer,
electronic mail device), and/or other communication devices.
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The browser device includes, for example, a computer (e.g.,
desktop computer, laptop computer) with a World Wide Web
browser (e.g., INTERNET EXPLORER® available from
Microsoft Corporation, of Redmond, Wash.). The mobile
computing device includes, for example, a BLACKBERRY®
provided by Research In Motion Limited of Waterloo,
Ontario, Canada.

“Comprise,” “include,” and/or plural forms of each are
open ended and include the listed parts and can include addi-
tional parts that are not listed. “And/or” is open ended and
includes one or more of the listed parts and combinations of
the listed parts.

Although the above disclosure discusses what is currently
considered to be a variety of useful examples, it is to be
understood that such detail is solely for that purpose, and that
the appended claims are not limited to the disclosed
examples, but, on the contrary, are intended to cover modifi-
cations and equivalent arrangements that are within the spirit
and scope of the appended claims.

One skilled in the art will realize the invention may be
embodied in other specific forms without departing from the
spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered in all respects
illustrative rather than limiting of the invention described
herein. Scope of the invention is thus indicated by the
appended claims, rather than by the foregoing description,
and all changes that come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What is claimed is:
1. A method for detecting materials in a hyperspectral
scene, the method comprising:

in a detecting engine provided with: 1) a spectral library of
references in which each reference is a spectrum of a
material, i1) dimensional reduced representations of the
spectra of a first pluralities of pixels included in the
hyperspectral scene, the representations including basis
vectors and dimensional reduced coefficients, and iii)
full spectra of a second plurality of pixels included in the
hyperspectral scene, with respect to a subject spectrum
of a respective material from the spectral library of ref-
erences;

for each pixel in the second plurality of pixels, determining
a score indicative of the likelihood that the spectrum of
a respective pixel matches the subject spectrum of the
respective material;

transforming the subject spectrum of the respective mate-
rial into dimensional reduced library coefficients based
on the provided basis vectors; for each pixel in the first
plurality of pixels, determining which pixel is a variant
pixel having dimensional reduced coefficients suffi-
ciently different from dimensional reduced coefficients
associated with other pixels;

for each variant pixel, determining a score indicative of the
likelihood that the dimensional reduced coefficients
associated with a respective variant pixel match the
dimensional reduced library coefficients of the respec-
tive material;

comparing the scores to a threshold;

based on the comparison, determining in which of the
pixels in the hyperspectral scene the respective material
is present;

calculating an error associated with the dimensional
reduced library coefficients of the respective material;

comparing the calculated error to a second threshold; and
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based on the comparison determining that the respective
material is not present in any of the pixels in the hyper-
spectral scene represented by dimensional reduced coef-
ficients.

2. The method of claim 1 wherein determining the score
indicative of the likelihood that the spectrum of the respective
pixel matches the subject spectrum of the respective material
includes comparing the spectrum of the respective pixel and
the subject spectrum of the respective material, in full dimen-
sion, using a Matched Filter or Adaptive Cosine/Coherence
Estimator (ACE).

3. The method of claim 1 wherein determining which pix-
els with dimensional reduced coefficients are variant pixels
includes separating the variant pixels from the pixels using
Reed-Xiaoli (RX) anomaly detection in reduced dimensional
space or residual magnitude scores.

4. The method of claim 1 wherein determining the score
indicative of the likelihood that the dimensional reduced
coefficients associated with the respective variant pixel match
the dimensional reduced library coefficients of the respective
material includes comparing the dimensional reduced coeffi-
cients associated with the respective variant pixel and dimen-
sional reduced library coefficients of the respective material
using a reduced dimension version of a matched filter (MF),
Adaptive Cosine/Coherence Estimator (ACE) or (RACE).

5. A system for detecting materials in a hyperspectral
scene, the system comprising:

a memory having computer executable instructions there-

upon;

at least one interface receiving: i) a spectral library of
references in which each reference is a spectrum of a
material, i1) dimensional reduced representations of the
spectra of a first pluralities of pixels included in the
hyperspectral scene, the representations including basis
vectors and dimensional reduced coefficients, and iii)
full spectra of a second plurality of pixels included in the
hyperspectral scene;

a detecting engine coupled to the memory and the at least
one interface, the computer executable instructions
when executed by the detecting engine cause the detect-
ing engine to, with respect to a subject spectrum of a
respective material from the spectral library of refer-
ences:

for each pixel in the second plurality of pixels, determine a
score indicative of the likelihood that the spectrum of a
respective pixel matches the subject spectrum of the
respective material;

transform the subject spectrum of the respective material
into dimensional reduced library coefficients based on
the provided basis vectors; for each pixel in the first
plurality of pixels, determine which pixel is a variant
pixel having dimensional reduced coefficients suffi-
ciently different from dimensional reduced coefficients
associated with other pixels;

for each variant pixel, determine a score indicative of the
likelihood that the dimensional reduced coefficients
associated with a respective variant pixel match the
dimensional reduced library coefficients of the respec-
tive material;

compare the scores to a threshold;

based on the comparison, determine in which of the pixels
in the hyperspectral scene the respective material is
present;

calculate an error associated with the dimensional reduced
library coefficients of the respective material;

compare the calculated error to a second threshold; and
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based on the comparison determine that the respective
material is not present in any of the pixels in the hyper-
spectral scene represented by dimensional reduced coef-
ficients.

6. The system of claim 5 wherein the detecting engine
determines the score indicative of the likelihood that the
spectrum of the respective pixel matches the subject spectrum
of the respective material by comparing the spectrum of the
respective pixel and the subject spectrum of the respective
material, in full dimension, using a Matched Filter or Adap-
tive Cosine/Coherence Estimator (ACE).

7. The system of claim 5 wherein the detecting engine
determines which pixels with dimensional reduced coeffi-
cients are variant pixels by separating the variant pixels from
the pixels using Reed-Xiaoli (RX) anomaly detection in
reduced dimensional space or residual magnitude scores.

8. The system of claim 5 wherein the detecting engine
determines the score indicative of the likelihood that the
dimensional reduced coefficients associated with the respec-
tive variant pixel match the dimensional reduced library coef-
ficients of the respective material by comparing the dimen-
sional reduced coefficients associated with the respective
variant pixel and dimensional reduced library coefficients of
the respective material using a reduced dimension version of
a matched filter (MF), Adaptive Cosine/Coherence Estimator
(ACE) or (RACE).

9. A tangible non-transitory computer-readable storage
medium having computer readable instructions stored therein
for detecting materials, which when executed by one or more
processors provided with: 1) a spectral library of references in
which each reference is a spectrum of a material, ii) dimen-
sional reduced representations of the spectra of a first plurali-
ties of pixels included in the hyperspectral scene, the repre-
sentations including basis vectors and dimensional reduced
coefficients, and iii) full spectra ofa second plurality of pixels
included in the hyperspectral scene, cause the one or more
processors to, with respect to a subject spectrum of a respec-
tive material from the spectral library of references:

for each pixel in the second plurality of pixels, determine a

score indicative of the likelihood that the spectrum of a
respective pixel matches the subject spectrum of the
respective material;

transform the subject spectrum of the respective material

into dimensional reduced library coefficients based on
the provided basis vectors;
for each pixel in the first plurality of pixels, determine
which pixel is a variant pixel having dimensional
reduced coefficients sufficiently diftferent from dimen-
sional reduced coefficients associated with other pixels;

for each variant pixel, determine a score indicative of the
likelihood that the dimensional reduced coefficients
associated with a respective variant pixel match the
dimensional reduced library coefficients of the respec-
tive material;

compare the scores to a threshold;

based on the comparison, determine in which of the pixels

in the hyperspectral scene the respective material is
present,

calculate an error associated with the dimensional reduced

library coefficients of the respective material;

compare the calculated error to a second threshold; and

based on the comparison determine that the respective

material is not present in any of the pixels in the hyper-
spectral scene represented by dimensional reduced coef-
ficients.



